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Abstract- Two new parallel optimization algorithms based on the simplex method

are described. They may be executed by a SIMD parallel processor architec-

ture and be implemented in VLSI design. Several VLSI design implementations

are introduced. An application example is reported to demonstrate that the

algorithms are effective.

1 Introduction

Optimal system control is an important part of modern control theory. The kernel problem

is optimizing the behavior of systems, as in minimizing the energy or cost required to

accurately reach some required terminal state. The search for the control which attains the

desired objective while minimizing (or maximizing) a defined system criterion constitutes

the fundamental problem of optimal control [1][2][31 .

To date, practical applications of optimal control theory are still quite few in number.

For a class of systems with fast response, the implementation of a real-time on-line optimal

controller has been difficult. The time-consuming computation required for optimal con-

trol solutions has been a major obstacle. Modern supercomputers with parallel processing

architectures and very fast computation speed are not a practical solution because of their

weight, size and cost. Fast computation, small size and low cost are basic requirements

for the controller. In this paper, the technique of an algorithmically specialized computer

is suggested to achieve an optimal controller which can realize both real-time computa-

tion and on-line control for a rapidly responding system. Effective algorithms, parallel

architecture, and VLSI implementation are involved in the design of the controller.

Efficient optimization algorithms are very necessary for solving the two-point boundary-

value (TPBV) problems which arise in optimal control. Chazan and Miranker in 1970 [4]

originally proposed a nongradient-based parallel search algorithm for unconstrained mini-

mization which is suitable for execution using an array of parallel processors. The algorithm

involves the parallel execution of n linear searches along the same direction, starting from

n points, when the dimension of the vector of unknowns is n. Travassos and Kaufman [5]

have applied the algorithm to the solutions of optimal control systems. Housos and Wing

in 1984 [6] reported a parallel pseudo-conjugMe direction algorithm that performs a set of

n linear searches in parallel along different search directions. Those parallel optimization

algorithms proceed by univariate optimization so that they are MIMD-type algorithms

[7]. Although they may be used to solve the optimal control problem, it is not easy to

shift them to VLSI design for a small size and low cost controller. Two new parallel,
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nongradlent-based algorithms for unconstrained optimization are presented in this paper.

In contrast to existing parallel optimization algorithms, the new parallel algorithms axe

baaed on a simplex method and are SIMD-type algorithms [7]. The advantage of the new

algorithms is that they do not need a linear search and may be easily shifted to VLSI

implementation. _.

Three kinds of design schemes: digitally controlled analog, hybrid, and pure digital, are

presented in this paper. Their VLSI implementation and their performances are discussed.

2 New parallel optimization algorithms

The following unconstrained minimization problem is considered:

min f(X), X C _",

where f : _'_ --+ _, and is usually non-quadratic and nonlinear.

We wish to find a point X" numerically such that, if _ > 0, then

f(x') < f(x), for _Ux: IIX - X*ll < _,

Two parallel simplex algorithms, PS1 and PS2, which are based on an _mproved simplex

method [8][9]and use par_Uelfunction ev_uations, are stated below.
A-lgorithm DSI: The algorithm PS1 predicts four candidate Vertices simultaneously

m one lterahon. T_erefore at ]east four parallel processors are reqmred. Eac_ Iteration

includes two phases: the first is for parallel evaluations and the second is for choosing a new

vertex to generate a new simplex via function value comparison. The computation time for

the function evaluations is always longer than the time for the function value comparison.

The execution of parallel function evaluations effectively reduces computation time since

it is a major part of the time for one iteration cycle. It is also important that the parallel

function evaluations are of the SIMD type. This allows the algorithm to proceed in the

SIMD parallel architecture. The number of parallel function evaluations required by PS1

is only about half the number required by the improved simplex algorithm of Nelder and

Mead [S].
The algorithm PS1 is described below:

(0) Initial simplex:

(0a) Set the iteration number k = 0.

0 0
(0b) Starting point v ° = (xl,x2,... ,x °) is given. An initial simplex

V 0 0 0 0= [vl, v2,... , vn+l] is formed in parallel by: v ° : (1 - *)v °

/ ov °+_Eiz_, ifx i ¢0
v_+l = v ° + 6El, otherwise

where Ei = {0...0 1 0...0},i = 1,2,...,n, and 6 = 0.1

=

E
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(Oc) Parallel evaluation of the function value at the vertices of Vo

yo = [/(v_),f(vo),..., f(_L1)].

(1) Parallel sorting:

•.. -- /LdSet k k+l Let S k k k k F k= . = [XI,X2, ,X,+,] and [f_,f_,..., be ordered

V _-I and yk-1.

Find d,d = max(llX _ - X_ll),i = 2,3,...,n + 1, if d is small enough, then stop,

otherwise continue as follows.

Denote

Xn+ 1,XtbyX_,X,hbyX_ Xhby k

f, by fxk, f°h by f k, fh by f.k+l.

The centroid X- is the mean of the vertices with i _ n + 1, i.e.,

_= i _x,__
12 i=l

(2) Parallel computation:

xo= (1- _)x+ _x_

X, = (I + 13)X - flXh

X, = (1 + _)X - aXh

x, = (1+ _)X - 7x_
Parallel function evaluations

fo= f(xo), L : f(xo), f, = f(x,) and f, : f(X_)

(3) Comparison and selection of new point for updating simplex:

(3a) If L < L < ft, then Xh = X, and fa = f,.

(3b) If fsh > fr > fl or A > A > A, then Xh = X,. and A = A.

(3c) If A > L > f,h and f, < Lh, then Xh = X,, and A = A-

(3d) If f, > fh and f, < f,h, then Xh : Xc and A = L"

(3e) If f, > fh and f, > fsh or if fh > f_ > f,h and fa > fsh, do shrinkage in parallel:

X° = [X,,X°i], where X, i = (Xj + Xx)/2, J = 2,3,...,n + 1, evaluate and

update f k = [fx,f(X,_),f(X°,),"',f(X°,,+t)] and S k = X°, then do

(4) Update the simplex:

let V k = S k, yk = F k, then return to (1).
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Algorithm PS2: The algorithm PS2 is developed from the algorithm PS1 by increas-

ing the parallel processors to sixteen. Twenty processors in total are utilized to predict

twenty candidate vertices simultaneously in one iteration. The algorithm PS2 is more effec-
tive than the _g0riflxm PS1. One iterati0n Of the algorithm PS_ i:s functlon_iiy _equiv_ent

to two iterations of the algorithm PS1. Thus the algorithm PS2 will do the same function

in roughly half the time of the algorithm PS1. Algorithm PS2 is also of the SIMD-type.

The algorithm PS2 is described below:

(0) The same as Step (0) of Algorithm PS1;

(1) The same as Step (1) of Algorithm PSI;

(2) Parallel computation:

(ca)

(2b)

(2c)

L - : :

Compute the first level direction points (four in total) in parallel:

x0 = (1 - _)Y + _Xh
x. = (1 + _)y- _x_
X, = (1 + a)X - aXh

x, =(1 +-r)X--rx_
and find 4 conductive points in parallel

X---_= ;_z.,j=ll_x-'"-IXj + Xi), i ='c', 'a', 'r', 'e',

Compute the second level direction points (sixteen in total) in parallel:

xl, = (1 - _)X_ + _x.h
m

x,. = (1 + _)x_ - _X.h
Xi,. = (1 + a)_i - aXsh

X,, = (1 + 7)Xi - 7X, h

where i ='c', 'a', 'r', 'e',

Parallel function evaluations

y, =/(x,)
s,o=s(x,c),],o=s(x,°),s,,--/(x,,) ands,,=/(x,,)
where i ='c', 'a', 'r', 'e',

(3) Comparison and updating simplex:

Set m = O,

(3a) If f, < f, < f_, j ='e', or

if f.h > f, > fl or f, > .If, < fp, j ='r', or

if fh > f, > f,h or £ < Lh, j ='a', or

if f, > h and f_ < f.h, j ='c', set m = m + I and do (35)

if f, > fh and f, > f.h, or if fS > f, > f0h and fo > f0h, do shrinkage in

parallel, X° = {X,,Xo,}, where X°j = (Xj + Xx)/2, j = 2,3,...,n + 1, evaluate

Fj, = {fl,f(X°2),y(Xo,),...,f(X°..+,)} and let s k = X0, then do (4).
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(3b) Replacing:

Xh = X,h, /h = /,h, X,h = X_, f,h = fj, and Xi = Xji, f_ =/ji.

If ra = 1 do (3a), otherwise do (4).

(4) The same as the step (4) of the algorithm PS1.

3 Example of application to real-time optimal control

The air-to-air missile-target intercept is a practical real-time optimal control application.

A typical intercept mission from missile launch to intercept, may take only a few seconds.

It is almost impossible to achieve true optimal control during such a short time interval

with present technology. The efficiency of the algorithm PS2 for real- time application of

optimal control is demonstrated in this section via simulation of a 3-dlmensional air-to-air

missile-target intercept problem. An optimal guidance law that minimizes missile energy

expenditure with fixed final time tf and fixed final state (zero miss range) is derived in

Ref [9] using nonlinear optimal control theory. This section focuses on solving the non-

linear TPBV problem (NTPBVP) which arises in the intercept problem by the "shooting

method" using Algorithm PS2.

{x_,y.,z_}

Figure I: 3-dimensional intercept geometry

x

Figure 1 shows the 3-dimensional intercept scenario. The target T moves in a straight

line at constant velocity VT and the missile M moves at controlled aceeieration a(t) and its

direction angles are a(t) and fl(t). An on-board optimal controller in the missile calculates

and provides, a(t), a(t) and fi(t) to the missile thruster.

The NTPBVP obtained is
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where

k2

Z3

Z4

25

26

2T

k9

= _ _1(0) = _1o,
= z5 _2(0) = _2o,
--- _6 _3(0) = _3o,
= -a(Z_o + z_l)Z,o z4(O) = z.o

= -a(_o + _h)_ _(o) = _o
= -azl2 _6(0) = _eo
- 0

= 0

= 0

= z_ rio(t1) - 0

= zs z11(_s) = 0

= _, _ _,_(_) -0

= (_0 + _h)_+ _h-

• l(_S) = 0
• 2(tf) - 0
•_(_!) = 0

(1)

Notice that the initial conditions Zlo to z60 are constant and the terminal values zl(tl)

to z3(tf) mad zxo(tt) to Zx2(tt) are zeros. The first six equations of (1) are the dynamics

of the system. The second six equations are the co-state equations. The shooting method

starts with estimating a set of initial values (z_(0)Zs(0)xg(0)_)T, then integrates (1 _forward,

with given and estimated initial values zx(0) to z12(0 ). The resulting terminal values are

usually different from the given ones. An error function E is defined by

E = !Zl(_])2 -4- 82(1_f) 2 + _3(_1) 3 AI- _!0(_-])1+ _li(_])2-_Zl'2($f) 2 (2)

The shooting method attempts to minimize the error function E:

min E --* 0 (3)

This can be done by means of the algorithm PS2 to update the estimated initial values

until (3) is satisfied.

The initially given condition is 1

zlo = 20000 (fO

z2o = 3000 (ft)

Z3o = 2500 (ft)

Z4o = -972 (ft/sec)

zso = -972 (ft/sec)

•_o = o (ft/_)
and the fixed final time is t t = 5(sec).

Assume the target velocity VT is constant, the travel path of the target will be a straight

llne. The target path may be calculated correctly by

1Data taken from Ref. [10]
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_T(_) = _OT "Jr VTT_

yr(t) = Y0r

ZT(0 = z0r

where [Z0T YOT zor] T is the target's initial position so that open-loop optimal control

may be employed by the missile.

To come up with open-loop optimal control numerically, one must first solve the NTP-

BVP (1). For a set of rough initial estimations

XTO = 1

_80 = 1

;g90 = 1

.using the algorithm PS2, the resulting solutions are in Table 1:

TI (sec)

[o 5]

OIV PFE CMR (ft)

x,(0)--0.65993

Xs(0)=-0.08107

:c9(0)=0.92175

114 0

RMR (ft)

1.287e-9

Table 1: The numerical results of the intercept scenario

TI-Time interval,

OIV-Optimal initial values,

PFE-Parallel function evaluations,

CMR-Constraint of miss range,

RMR-Real miss range.

As a rough estimation of computation time, if the PFE < 120 in five seconds as shown

in Table 1, then the real-time optimal control can be implemented for this air-to-air missile-

target intercept problem. This is very possible with modern VLSI techniques. In the next

section several VLSI design possibilities are introduced.

4 VLSI implementations

This section presents design possibilities for potential real-time_ on-llne, optimal con-

trollers. These optimal controllers will be algorlthmlcally specialized parallel computers
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consistingof a few VLSI chips. Small special-purpose optimal controllers should be useful

for certain optimal control systems, such as aircraft control, missile guidance, etc.

To conserve space, only the algorithm PS1 is considered for VLSI implementation in

this section. The design procedure can be used for algorithm PS2, but the resulting circuit

will be more complex.

4.1 Schematic design

A schematic diagram Of the implementation of the algorithm PSi is shown _in Figure 2.

The dashed box performs the main function of the algorithm PS1. In order to be useful for

various control systems, a parcel function evaluator (P-FE) is separated _0m the dashed

box. The PFE is an array of four 2 parallel processors: The complete system includes two

separate parts: the main algorithm part and the PFE. The main part is the algorithm

itself in which the design is fixed. The PFE is more flexible and is different from system
to system.

PFE

4 Function
Evaluators

Start
OTC

T
Digital Timing

Repea' Controller

_Sw I__.

......... i

'X"

f. _. f.

x._xi
/4n_

f, _, f.,f,

E

Figure 2: Block diagram of the algorithm PS1

The operation of the system outlined in Figure 2 may be described as follows.

The IS, connected to the input X0, is for the generation of an initial simplex [X0i...

X0(,+_)]. Via the multiplexer (Mul), the function values on the initial simplex may be

evaluated by the external PFE. The outputs of the PFE, [f(X_),..-,f(X,_+x)], via the

2Twenty for the algorithm PS2.



3rd NASA Symposium on VLSI Design 1991 11.2.9

demultiplexer (DMul) and a set of updating switches (USw), are saved in the simplex

memories (SMe). The MUl and the DMul also pass the initial simplex vertexes, denoted

as [XI"-X,,+I], to the SMe. Then a basic simplex with its function values is stored for

further operations.

According to the algorithm PS1, the stored simplex must be updated. To do this, the

simplex in the SMe must be first sorted by a sorting circuit (Sorting). A sorted simplex,

[Sl,... ,X,h, Xh] with function values [ft,'", f,h,fh], is available at the output of the

Sorting. From it four direction points, Xc, X,, X, and X,, can be found in the direction

points module (DP). Similar to the initial simplex, they and their function values, fc, fo, f,

and f,, evaluated by the PFE are stored in the direction memories (DMe) via the MUl and

the DMul. A new point module (NP) compares [f_, f_, f, and f_] with [ft, f,h and fh] and

then selects a proper one of the direction points, denoted by X_,, with its function value

f_,. Via the USw the X_, replaces the vertex Xh to update the basic simplex. The positions

of Xh and fh are indexed by one of the signals gl to g,+l generated by the Sorting.

In case no new point can be selected, the NP will send out a digital signal Ds. Through

it the DTC generates another control signal Cs to the Mul and the DMul, then a shrunken

simplex from the simplex shrinkage (SSh), [X1,X,1,"',X,,_], with its function values is

passed to the SMe, so that the basic simplex is updated.

The simplex size module (SSi) and the convergence testing module (CT) monitor the

size of the sorted simplex and its minimal function value. Together with the size switches

(SSw) and the Sorting, when one of them satisfies a given criterion, the CT will send a

"stop" signal to finish the iterations.

The digital timing controller (DTC) is necessary to control the timing of the whole

system. The functions of the DTC may be stated by defining its inputs and outputs as

follows:

Inputs:

Start:
T:

Repeat:

Stop:
Ds:

Outputs:

Ce:

Ci:

Cs:

Cd:

Cr:
Cm:
Ct:

actuates the DTC and starts the computation,
a parameter given for setting up the width of the Ce's active
interval,
after the computation, reactuates the DCT and repeats the
solutions if necessary,
stops the iteration when the solutions are available,
active when shrinkage simplex is needed, sets up the Cs,

actuates the PFE, the MUl and the DMul, its active length is given
by the input T,
passes the initial simplex and its function values to the SMe via the
Mul and the DMUl,
passes the shrinkage simplex and its function values to the SMe via

the MUl and the DMUl, it is controlled by the input Ds,
passes the direction points and their function vatues to the DMe
via the Mul and the DMUl,
repeats the computation, it is controlled by the input "Repeat",
actuates the SMe and the DMe,
tests the simplex size, active at each iteration.

The design of the DTC is a normal digital logic design and is not included here.
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To meet various application requirements, three kinds of design schemes (1) digitally

controlled analog, (2) hybrid, and (3) all-digital, are suggested here. The design of digitally

controlled analog is due to analog computation on both the PFE and the main algorithm

part. The hybrid design uses digital computation for the main algorithm. Finally the

digital design is a pure digital scheme. Due to their different characteristics, they are
employed in different circumstances as listed below.

For the digitally controlled analog controller:

1. Accuracy limited but faster computation.

2. Limited memory period ......

3. More efficient for low frequency systems with shorter operation time.

For the hybrid controller:
1. Same as 1 above.

2. Unlimited memory period.

3. More efficient for low frequency systems with longer operation time.

For the digital controller:

1. Accuracy unlimited but slow computation.

2. Unlimited memory period.

3. No strong relation to frequency and time of system operation.

4.2 Digitally controlled analog scheme

In general, analog computation is faster than digital computation. This suggests the PFE

and the main algorithm part (n0t including the _)TC)-may be implemented _by analog

techniques. However analog long-time memory is not easily implemented on a VLSI chip.

Memory time is strongly depended on the problem's complexity. If the requirement for

memory time is too long and the size requirement is critical, the hybrid computation
scheme should be considered as below.

4.3 Hybrid scheme

The hybrid scheme includes digital computation and memories in the main algorithm part.

But the PFE still uses analog techniques. In practice, the PFE is a parallel electronic

differential analyzer (EDA) which consists of some integrators. Integration computations

is more convenient with analog circuiting than with digital. Keeping the PFE in analog

will reduce computation time. A hybrid scheme is suggested in Figure 3. The system has

three sections: the PFE, the digital algorithm processor and the linkage system, in which

some analog/digital (A/D) and digital/analog (D/A) converters are essential.

Each numerical value in the digitally controlled analog scheme mentioned above, such

as each function value, each element value of a simplex vertex and each constant value,

wi]] be described in m-bit form and be stored in a m-bit register. In order to achieve

parallel computation, the input and output to these registers are parallel m-bit data buses.

Furthermore, all of the digital devices in this system are parallel.
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PFE

(Parallel EDAs)

Digital

Algorithm

Section,

Figure 3: Hybrid scheme

4.4 Digital scheme

Based on the hybrid scheme, a pure digital optimal controller may be obtained by designing

a digital PFE. A key point is to design, for the PFE, a digital integrator, which is very

different from an analog one. The design of the digital PFE is related to both the solution

methods and the particular problem, and may be separated into two parts. The first

one is an algorithmically specialized unit of a solving algorithm, such as the Runge-Kutta

algorithm, and another is a computing unit of a given differential equation.

5 Conclusion

Two new parallel optimization algorithms, PS1 and PS2, based on the simplex method

are described. Four processors are required for PS1 and twenty for PS2. They may be

executed by a SIMD parallel processor architecture and may be easily shifted to VLSI

design.
The numerical result of a 3-dimensional air-to-air missile-target intercept problem has

been reported to demonstrate that the algorithms are effective and the real-time optimal

controllers are feasible for a class of optimal control systems with fast response.

As a design example, the algorithm PS1 has been shifted to a VLSI implementations.

Three types of controller design schemes have been presented: (1) digitally controlled

analog, (2) hybrid, and (3) pure digital controller. They can be employed satisfactorily for

different application requirements.

In general, the optimal controllers converge rather rapidly, once the estimation of an

initial value is found such that the evaluation of the error function E being minimized re-

sults in a number in the neighborhood of zero. However, if the problem to be solved is very

sensitive to small perturbations in the initial co-state vector, convergence to an optimal
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solution may be slow, or even fail. This case was not considered in this research. To over-

come this problem a method [5] suggested by R. Travassos and It. Kaufman may be added

in the design of the optimal controllers. This approach is currently under consideration.
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